
Critical heat current for operating an entanglement engine

Shishir Khandelwal, Nicolas Palazzo, Nicolas Brunner, Géraldine Haack
Département de Physique Appliquée, Université de Genève
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Two-qubit entanglement engine

Fig. 1: Two-qubit thermal machine

H = HS + Hint + HB + HSB (1)

Local master equation

The local Lindblad equation (valid for weak-inter-qubit coupling [2]) for the machine is
given by
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with the dissipators D [A] ρ(t) := Aρ(t)A†−{A†A, ρ(t)}/2. For Bosonic baths, γ+
j =

γjn
(j)
B and γ−j = γj(1 + n
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The steady-state heat current is defined as Jss := Qss
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The steady-state negativity is given by

N(ρss) = max {0, n(ρss)} , (5)

where
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)
. (6)

Using the exact form of the steady state,

c =
Jss (2δ − iΓ)

4g (εhΓc + εcΓh)
, (7)

Combining with the condition for non-zero steady-state entanglement, |c|2 > r1r4
(PPT criterion), one obtains a lower bound on heat current for non-zero entanglement
in the steady state.

Jss >

√
16g2r1r4

Γ2 + 4δ2
(εhΓc + εcΓh)2 := Jc (8)

Necessary and sufficient condition for the engine to operate successfully!

Results

Fig. 2: Steady-state (a) heat current Jss/εh and (b) negativity N(ρss) as functions of κh/εh and δ/εh, with κc = 0,

Th/εh = 0.7, Tc/εh = 0.1, g/εh = 1.6× 10−3, γh/εh = 10−3 and γc/εh = 1.1× 10−2.

Fig. 3: Steady-state heat current Jss/εh and negativity N(ρss) as functions of κh/εh, with κc = 0 and δ/εh = 0.01. The

horizontal dashed curves mark the heat current and negativity respectively, for δ = 0 and κh = κc = 0, for different values

of Th/εh. Tc/εh = 0.1, g/εh = 1.6× 10−3, γh/εh = 10−3 and γc/εh = 1.1× 10−2

Critical heat current

Fig. 4: Steady-state (a) heat current Jss/εh and (b) negativity N(ρss) as functions of κh/εh and δ/εh, with κc = 0,

Th/εh = 0.7, Tc/εh = 0.1, g/εh = 1.6× 10−3, γh/εh = 10−3 and γc/εh = 1.1× 10−2.

Global master equation

For strong-inter-qubit coupling, we rely on a global master equation [2]
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L̂j(ε−) = |0〉〈0|σ(j)
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Fig. 5: (a)Steady-state negativity N
(
ρglss
)

as functions of temperature Th, for Tc/ε = 0.01, γh/ε = 0.01, ε = 1 and

different values of g.

(b) N
(
ρglss
)

as a function of g, with Tc/ε = 0.01, γh/ε = 0.01, ε = 1 and different values of γc. The value of Th is

optimised to give the maximum negativity.

Conclusions

• To find non-zero entanglement in the steady state, there exists a critical steady-
state heat current which needs to be maintained.

• There is a critical heat current in both global and local approaches to the master
equation.

• Strong inter-qubit coupling is not superior to weak-inter qubit coupling and in-
volves the problem of entanglement at thermal equilibrium.
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